Gravity Group Summary

Vuk Mandic, University of Minnesota DUSEL Workshop, Lead, SD 10/03/09

Locations, Needs etc

- Not part of the S4/S5 process...
- Immediate plans (next year or so):
 - » Expand seismic array in the "orthogonal" direction, preferably near 2000 and 4100 levels (~2 stations, maybe more).

Locations, Needs etc

- Not part of the S4/S5 process, but these are our plans.
- Immediate plans (next year or so):
 - » Expand seismic array in the "orthogonal" direction, preferably near 2000 and 4100 levels (~2 stations, maybe more).
 - » Initiate R&D effort for the optical strainmeter:
 - Find an appropriate location.
 - Design vacuum chamber.
 - R&D mounting of mirrors on the cavern wall (may require drilling etc).
 - » Continue other R&D efforts:
 - Tilt-meter.
 - Test new seismometer technologies.
 - Use existing station at 4100 level.
 - » Install AdvLIGO timing distribution system.

Timing Distribution System

- Developed by S. Marka's group, Columbia University, for purposes of Advanced LIGO.
- Star-like topology:
 - » Master, fan-out, and slave modules, connected with fiber links.
 - » 15 ns resolution or better.
 - » Arbitrary timing signals (1PPS ramps, sine waves etc).
 - » Synchronization to GPS or atomic clocks.
 - » Expandable hardware, multi-level diagnostics...
- Plan to install first modules this winter.

Longer Term...

- DUGL proposal submitted to NSF.
- Proposed 3-year effort:
 - » Further development of the seismometer array.
 - » Installation of the optical strainmeter.
 - » Torsion balance experiments (measurements of gravity gradients and rotational normal modes, equivalence principle tests).
- Very long term:
 - » DUGL proposal will inform the design of an underground gravitational wave detector, and it will be a cornerstone of a future proposal to build such a detector.
- Contact: Vuk Mandic, University of Minnesota
 - » mandic @ physics.umn.edu

Atom Interferometry

- Had a very interesting discussion with members of the atominterferometry community (Mark Kasevich, Holger Mueller, Philippe Bouyer, Andre Petukhov).
- Technology currently used to develop seismometers, gravimeters and gravity gradiometers.
 - » Potential to improve over the existing technologies.
 - » Could also be of importance for studying the gravity gradient noise due to seismic motion (verifying gravity gradient noise models).
- Possibility of operating the AI instruments along-side the traditional seismometers at DUGL stations.
- Long term: gravitational wave search.
- Look forward to collaborating more in the future...

